Menoufiya University
Faculty of Engineering, Shebin El-Kom
Power Engineering Department
First Semester Examination , 2014-2015

Subject: Applied Mechanics Code: 117
Year : 2014/2015
Time Allowed : 3 hours
Total Marks : 75 marks
Date of Exam : 14/1/2014

Part I: Statics

Answer the following questions

(Question 1): (10 marks)
a) Define the following:

The area moment of inertia, the mass moment of inertia and the radius of gyration.
b) Determine the moment of inertia of the shaded area shown in Fig. 1 with respect to the X -axis.

(35 marks)

Fig. 1

(Question 2): (10 marks)
a) For the structure shown in Fig. 2-a, determine the components of reactions at supports A and B and the value of P, ω and q with the aid of shear force diagram shown in Fig. 2-b.
b) Draw the bending moment diagram indicating the location and magnitude of the maximum positive and maximum negative bending moments. Also, the location of points of contraflexture.
(Question 3): (15 marks)
Determine the components of reactions at supports A and B for the simple frame shown in Fig. 3 and draw the normal force, shear force and bending moment diagrams.

S.F.D.
Fig. 2

Fig. 3
This exam contributes "by measuring ILOs" in achieving Programme Academic Standards according to NARS

PART 2 (Dynamics):

Question (1):- (10 marks)

a- What are the three type of rigid body planner motion, (3 Marks) Give a short description of each. ?
b- A smooth- 5 kg collar c, shown in Fig. (1) is attached to
(7 Marks) a spring having a stiffness $\mathrm{k}=3 \mathrm{~N} / \mathrm{m}$ and unstretched length of 0.75 m . If the collar is released from rest at A , Determine its acceleration and the normal force of the rod on the collar at the instant $\mathrm{y}=1 \mathrm{~m}$.

fig. (1)

Question (2):- (12 marks)

a-what is the principle of work and energy used to solve kinetic problems .? (2 Marks)
b- Tow disks A and B having a mass of 2 kg and 5 kg , respectively. If they are sliding on smooth horizontal plane with the velocities Shown in Fig. (2), determine their velocities just after impact The coefficient of restitution between the disks is $\mathrm{e}=0.6$
(8 Marks)
fig . (2)

Question (3):- (10 marks)

a- Can a point have an angular velocity, (2 Marks) and what does it means by the term $\left(\mathrm{V}_{C / A}\right)_{\mathrm{xyz}}$ is zero.
b- The link shown in Fig. (3) is guided by two blocks
(8 Marks) at A and B, which move in fixed slots. If the velocity of A is $2 \mathrm{~m} / \mathrm{s}$ downward,
Determine by two methods the velocity of B at the instant $\theta=45^{\circ}$.

fig. (3)

Question (4):- (10 marks)

a- What are the equations of motion for a particle moves in tangential and normal coordinates.? (2 Marks)
b- The bar shown in Fig. (4) has a mass of 20 kg is subjected to a couple moment of $\mathrm{M}=50 \mathrm{~N} . \mathrm{m}$ and a force of $\mathrm{P}=80 \mathrm{~N}$, which is always applied perpendicular to the end of the bar. Also the spring has an unstretched length of 0.5 m and remains in the vertical position due to the roller guide at B .

Determine:-

The total work done by all the forces acting on the bar when it has rotated from $\theta=0^{\circ}$ to $\theta=90^{\circ}$
(8 Marks)

With our best wishes

Question Number	Q1-a	Q2-a	Q3-a	Q4-a	Q1-b	Q2-b	Q3-b	Q4-b	Q1-b	Q3-b	Q4-b		
Skills	a1-1	a19-1	a15-2	a5-1	b16-1	b17-1	b1-1	b16-1	c13-1	c14-1	c13-1		
	Knowledge \& Understanding Skills				Intellectual Skills				Professional Skills				

